Name:

Student #: _____

King Fahd University of Petroleum and Minerals College of Computing and Mathematics Department of Computer Engineering

COE 301 – Computer Organization (T212) ICS 233 – Computer Architecture & Assembly Language (T212)

Midterm Exam – SOLUTION

Date & Time: Friday March 18, 2022 (06:00 PM – 08:00 PM)

- This is a CLOSED books, CLOSED notes exam.
- Answer ALL problems.
- <u>Show all your work</u>. NO partial credit will be given if work is not shown.
- Use of mobile phones, smart phones/watches, tablets is prohibited.

Problem	Mark	Score
1	4.0	
2	6.0	
3	4.0	
4	6.0	
5	2.0	
6	2.0	
7	4.0	
8	3.0	
9	4.0	
10	2.0	
11	2.0	
12	2.0	
13	8.0	
Total	49.0	

Select your section number:

- **COE 301 Section 1** (UTR 08:00 Dr. Ayaz Khan)
- **COE 301 Section 2** (UTR 11:00 Dr. Marwan Abu-Amara)
- **ICS 233 Section 1** (UTR 11:00 Dr. Ayaz Khan)
- **ICS 233 Section 2** (UTR 10:00 Dr. Ayaz Khan)

<u>Problem 1 (4 points)</u>: Write a MIPS code fragment that computes $\$s1 = (\$s0 \times 45)$ without the use of multiplication instructions while using a <u>minimum</u> number of instructions. HINT: $45 = (3 \times 15)$

```
sll $t0, $s0, 2
subu $t1, $t0, $s0
sll $t2, $t1, 4
subu $s1, $t2, $t1
```

<u>Problem 2 (6 points)</u>: Translate the following nested if-statements into <u>minimal</u> MIPS assembly code. All variables are signed integers. The values of **a**, **b**, and **c** are stored in **\$t0**, **\$t1**, and **\$t2**, respectively.

```
if ((a >= 0) && (a <= 9)) {
    if (b \ge c) = a = b - c;
    a = a / 4;
  }
     addi $t3, zero, 9
                           # $t3 = 9
          $t0, zero, L1
     blt
                           # if (a < 0), skip outer if statement</pre>
     bgt $t0, $t3, L1
                           # if (a > 9), skip outer if statement
     bgt $t2, $t1, L2
                           # if (b < c), skip computing a = b - c
     subu $t0, $t1, $t2
                           # a = b - c
                           # compute a = a / 4 (use "sra" as a is signed)
L2:
     sra $t0, $t0, 2
L1:
     . . .
```

Address	Label	Instruction								
0x40B8100C	L1:	add \$a0, \$t1, \$t2								
		• • •								
0x40B82000	L2:	and \$a1, \$t1, \$t2								
		• • •								
0x40B82028		bgt \$a0, \$a1, L2								
		• • •								
0x40B9C000		j L1								

Problem 3 (4 points): The following is a partial MIPS assembly language code:

i. Calculate the **hexadecimal** 16-bit immediate value (imm₁₆) in the **bgt** instruction:

 $imm_{16} = (0x40B82000 - 0x40B8202C)/4 = - 0x002C/4 = - 0x000B = 0xFFF5$

ii. Calculate the **hexadecimal** 26-bit immediate value (imm₂₆) in the **j** instruction:

PC L1: 0100 [0000 1011 1000 0001 0000 0000 11]00 $\Rightarrow imm_{26}$: 00 0010 1110 0000 0100 0000 0011 = 0x02E0403

Problem 4 (6 points):

(a) (4 points) Complete the symbol table for the following data definitions showing the address of each label, given the address of var1 is 0x10010000 in the data segment.

	.DATA		
var1:	.HALF	-2, -3, 4,	5
str1:	.ASCIIZ	"EXAM"	
var2:	.WORD	0x5678ABCD	
	.ALIGN	4	
var3:	.HALF	1000	

Label	Address					
var1	0x10010000					
str1	0x10010008					
var2	0x10010010					
var3	0x10010020					

(b) (2 points) Given the data definition of part (a), show the value loaded into register **\$t1** (in hexadecimal). Assume Little Endian Byte ordering is used.

Instruction	Sequence Value loaded into \$t1 (hexadecimal)
la \$t0, var1 lb \$t1, 0(\$t0)	<pre>\$t1 = 0xFFFFFFE (-2)</pre>
la \$t0, var2 lh \$t1, 0(\$t0)	\$t1 = 0xFFFFABCD

<u>Problem 5 (2 points)</u>: Given that \$t0 = 0x07B95342 and \$t1 = 0x85305421 are two <u>signed</u> integers, consider the following instruction:

sub \$t2, \$t0, \$t1

Perform the subtraction in hexadecimal and indicate whether there is overflow. Show the subtraction in hexadecimal below.

 \Rightarrow Overflow occurred since adding 2 positive numbers resulted in a negative number.

Problem 6 (2 points): Let M[6][9] be an array of **integers** with 6 rows and 9 columns that have been saved in the memory with &M[0][0] stored in \$t0. Determine the displacement XX (in decimal) in the following instruction to properly access the integer stored at M[2][8]:

lw \$t1, XX(\$t0)

 $XX = (2 \times 9 + 8) \times 4 = 104$

Problem 7 (4 points): Show the binary multiplication of the following two 16-bit unsigned integers. The product should be a 32-bit unsigned integer. Do NOT show partial products (rows) that contain only zeros.

																	1	1	1	1	0	1	1	0	1	0	0	0	1	0	1	1
																×	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0
Solut	:10	on:													1																	
Carry	/ t	oit	S					1	1	1	1	1	1	1	1	1	1	1				1										
															1	1	1	1	0	1	1	0	1	0	0	0	1	0	1	1		
											1	1	1	1	0	1	1	0	1	0	0	0	1	0	1	1						
				1	1	1	1	0	1	1	0	1	0	0	0	1	0	1	1													
	0	0	0	1	1	1	1	1	0	0	0	1	0	0	1	0	1	1	0	1	1	1	0	0	1	1	1	0	1	1	0	0

<u>Problem 8 (3 points)</u>: Complete the table below to perform the multiplication of two 4-bits signed numbers **1011 (-5)** and **1010 (-6)** using the following MIPS hardware.

Iteration	Steps	Multiplicand	Sign	Product = HI, LO
0	Initialize	1011		0000 1010
1	No Add			
	Shift Right			0000 0101
2	Add	1011	1	1011 0101
	Shift Right			1101 1010
3	No Add			
	Shift Right			1110 1101
4	Sub (Add 2's Compl)	0101	0	0011 1101
	Shift Right			0001 1110

Problem 9 (4 points): Complete the table below to perform the division of two 4-bits signed numbers: **1010 (-6) / 1011 (-5)** using the following MIPS hardware **and** calculate the final answers for the quotient and the remainder.

Iteration	Steps	HI	LO	Divisor	Difference
0	Initialize	0000	0110	0101	
1	Shift Left, HI – Divisor	0000	1100	0101	< 0
	Do Nothing				
2	Shift Left, HI – Divisor	0001	1000	0101	< 0
	Do Nothing				
3	Shift Left, HI – Divisor	0011	0000	0101	< 0
	Do Nothing				
4	Shift Left, HI – Divisor	0110	0000	0101	0001
	HI, LO update	0001	0001		

Quotient = _____

Remainder = _____

```
Both Dividend and Divisor are negative.
Quotient = HI = 0001 (+1), Remainder = 2's compl of LO = 1111 (-1)
```

Problem 10 (2 points): Find the decimal value of the following single-precision floating-point number:

1100 0010 1011 1110 0100 0000 0000 0000

Sign = negative Exponent value = $(1000 \ 0101)_2 - 127 = (128+4+1) - 127 = 133 - 127 = 6$ - $(1.011 \ 1110 \ 0100 \ 0000 \ 0000)_2 \times 2^6 = -(1011111.00100 \ 0000 \ 0000)_2 =$ -(64+16+8+4+2+1+0.125) = -95.125

Problem 11 (2 points): Show the normalized single-precision floating-point in IEEE754 format binary representation for: **-116.325** (solve up to 4 fractional bits)

Problem 12 (2 points): Convert the following IEEE 754 double-precision floating-point number into IEEE 754 single-precision. Use rounding to zero (i.e., truncate the lesser significant bits) if needed.

0011 0101 0101 1101 1101 1001 0010 1001 1100 0101 0101 1010 1001 0011 0100 1011

Sign = 0

E_{DP} = (011 0101 0101)₂ = 853 → Exponent = 853-1023 = -170

It will be an underflow for single precision floating point number as the exponent value is out of range.

Problem 13 (8 points): Write a MIPS function *sum_digits* that computes and returns the sum of decimal digits in an **unsigned integer**. For example, the sum of decimal digits for **1536** is **1+5+3+6** = **15**. The function *sum_digits* receives the unsigned integer argument in binary in register **\$a0**. For example, **1536** = **(0000 ... 0110 0000 0000)**₂. It should extract the decimal digits, compute, and return their sum, also in binary, in register **\$v0**. Hint: divide the unsigned integer by **10** to extract the decimal digits.

Non-recursiv	ve Sol	ution			
<pre>sum_digits:</pre>	li	\$v0,	0	#	\$v0 = sum = 0
	li	\$t0,	10	#	divisor = 10
loop:	divu	\$a0,	\$t0	#	divide by 10
	mfhi	\$t1		#	\$t1 = remainder
	mflo	\$a0		#	\$a0 = quotient
	add	\$v0,	\$v0, \$t1	#	add decimal digit
	bne	\$a0,	\$zero, loop	#	loop if more digits in \$a0
	jr	\$ra		#	return to caller
Recursive So	olutio	n			
<pre>sum_digits:</pre>	li	\$t0,	10	#	divisor = 10
	bne \$	5a0, \$	zero, next	#	do recursive call if quotient \neq 0
	li	\$v0,	0	#	otherwise return \$v0 = 0
	jr	\$ra		#	return to caller
next:	addiu	sp,۱	\$sp, -8	#	allocate stack frame (2 words)
	SW	\$ra,	0(\$sp)	#	save return address in 1 st word
	divu	\$a0,	\$t0	#	divide by 10
	mflo	\$a0		#	\$a0 = quotient
	mfhi	\$t1		#	\$t1 = remainder
	SW	\$t1,	4(\$sp)	#	<pre>save \$t1 across recursive calls</pre>
	jal	sum_	digits	#	recursive call
	lw	\$t1,	4(\$sp)	#	restore last \$t1
	addu	\$v0,	\$v0, \$t1	#	add restored \$t1 to current \$v0
	lw	\$ra,	0(\$sp)	#	restore return address
	addiu	ı\$sp,	\$sp, 8	#	release current stack frame
	jr	\$ra		#	return to caller

Name	Register	Usage						
\$zero	\$0	Always 0	(forced by hardware)					
\$at	\$1	Reserved for assemb	ler use					
\$v0 - \$v1	\$2 - \$3	Result values of a fur	iction					
\$a0 - \$a3	\$4 - \$7	Arguments of a functi	on					
\$t0 - \$t7	\$8 - \$15	Temporary Values						
\$s0 - \$s7	\$16 - \$23	Saved registers (preserved across call)						
\$t8 - \$t9	\$24 - \$25	More temporaries						
\$k0 - \$k1	\$26 - \$27	Reserved for OS kerr	nel					
\$gp	\$28	Global pointer	(points to global data)					
\$sp	\$29	Stack pointer	(points to top of stack)					
\$fp	\$30	Frame pointer	(points to stack frame)					
\$ra	\$31	Return address (used for function call)						

Inst	ruction	Meaning		R-Type Format							
add	\$s1, \$s2, \$s3	\$s1 = \$s2 + \$s3	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x20			
addu	\$s1, \$s2, \$s3	\$s1 = \$s2 + \$s3	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x21			
sub	\$s1, \$s2, \$s3	\$s1 = \$s2 - \$s3	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x22			
subu	\$s1, \$s2, \$s3	\$s1 = \$s2 - \$s3	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x23			
						_					

Ins	truction	Meaning	R-Type Format								
and	\$s1, \$s2, \$s3	\$s1 = \$s2 & \$s3	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x24			
or	\$s1, \$s2, \$s3	\$s1 = \$s2 \$s3	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x25			
xor	\$s1, \$s2, \$s3	\$s1 = \$s2 ^ \$s3	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x26			
nor	\$s1, \$s2, \$s3	\$s1 = ~(\$s2 \$s3)	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x27			

Instruction		Meaning	R-Type Format					
sll	\$s1,\$s2,10	\$s1 = \$s2 << 10	op = 0	rs = 0	rt = \$s2	rd = \$s1	sa = 10	f = 0
srl	\$s1,\$s2,10	\$s1 = \$s2>>>10	op = 0	rs = 0	rt = \$s2	rd = \$s1	sa = 10	f = 2
sra	\$s1, \$s2, 10	\$s1 = \$s2 >> 10	op = 0	rs = 0	rt = \$s2	rd = \$s1	sa = 10	f = 3
sllv	\$s1,\$s2,\$s3	\$s1 = \$s2 << \$s3	op = 0	rs = \$s3	rt = \$s2	rd = \$s1	sa = 0	f = 4
srlv	\$s1,\$s2,\$s3	\$s1 = \$s2>>>\$s3	op = 0	rs = \$s3	rt = \$s2	rd = \$s1	sa = 0	f = 6
srav	\$s1,\$s2,\$s3	\$s1 = \$s2 >> \$s3	op = 0	rs = \$s3	rt = \$s2	rd = \$s1	sa = 0	f = 7

Instruction		Meaning		I-Type Format					
addi	\$s1, \$s2, 10	\$s1 = \$s2 + 10	op = 0x8	rs = \$s2	rt = \$s1	imm ¹⁶ = 10			
addiu	\$s1, \$s2, 10	\$s1 = \$s2 + 10	op = 0x9	rs = \$s2	rt = \$s1	imm ¹⁶ = 10			
andi	\$s1, \$s2, 10	\$s1 = \$s2 & 10	ор = Охс	rs = \$s2	rt = \$s1	imm ¹⁶ = 10			
ori	\$s1, \$s2, 10	\$s1 = \$s2 10	op = 0xd	rs = \$s2	rt = \$s1	imm ¹⁶ = 10			
xori	\$s1, \$s2, 10	\$s1 = \$s2 ^ 10	op = 0xe	rs = \$s2	rt = \$s1	imm ¹⁶ = 10			
lui	\$s1, 10	\$s1 = 10 << 16	op = 0xf	0	rt = \$s1	imm ¹⁶ = 10			

Instruction	Meaning		Format							
j label	jump to label	c	p ⁶ = 2	2	imm ²⁶					
beq rs, rt, label	branch if (rs == rt)		p ⁶ = 4	rs ⁵		rt ⁵		imm ¹⁶		
bne rs, rt, label	s, rt, label branch if (rs != rt)		p ⁶ = 5	i rs ⁵	rs ⁵ rt ⁵			imm ¹⁶		
blez rs, label	branch if (rs<=0)	op ⁶ = 6 rs ⁵ 0			imm ¹⁶					
bgtz rs, label	branch if (rs > 0)	c	p ⁶ = 7	′ rs ⁵	rs ⁵ 0			imm ¹⁶		
bltz rs, label	branch if (rs < 0)	c	p ⁶ = 1	rs ⁵		0		imm ¹⁶		
bgez rs, label	branch if (rs>=0)	c	op ⁶ = 1 r			1		imm ¹⁶		
Instruction	Meaning	Format								
slt rd, rs, rt	rd=(rs <rt?1:0)< td=""><td>C</td><td>op⁶ = 0</td><td>) rs⁵</td><td>j</td><td>rt⁵</td><td>rd⁵</td><td>0</td><td>0x2a</td></rt?1:0)<>	C	op ⁶ = 0) rs ⁵	j	rt⁵	rd ⁵	0	0x2a	
sltu rd, rs, rt	rd=(rs <rt?1:0)< td=""><td>c</td><td>op⁶ = 0</td><td>) rs^t</td><td>;</td><td>rt⁵</td><td>rd⁵</td><td>0</td><td>0x2b</td></rt?1:0)<>	c	op ⁶ = 0) rs ^t	;	rt ⁵	rd ⁵	0	0x2b	
slti rt, rs, imm ¹	⁶ rt=(rs <imm?1:0)< td=""><td></td><td>Oxa</td><td>rs</td><td colspan="2">rs⁵</td><td></td><td colspan="2">imm¹⁶</td></imm?1:0)<>		Oxa	rs	rs ⁵			imm ¹⁶		
sltiu rt, rs, imm ¹	⁵ rt=(rs <imm?1:0)< td=""><td></td><td>0xb</td><td>rs</td><td>;</td><td>rt⁵</td><td></td><td colspan="3">imm¹⁶</td></imm?1:0)<>		0xb	rs	;	rt ⁵		imm ¹⁶		
Instruction	Meaning	1		-	I-T	I-Type Format				
lb rt, imm ¹⁶ (rs)	rt = MEM[rs+imn	m ¹⁶] 0x20) rs	rs ⁵ rt ⁵			imm ¹⁶		
Ih rt, imm ¹⁶ (rs)	rt = MEM[rs+imn	n ¹⁶] 0x21		1 rs	5	rt ⁵		imm ¹⁶		
lw rt, imm ¹⁶ (rs)	rt = MEM[rs+imn	n ¹⁶]	0x2	3 rs	5	rt ⁵	imm ¹		1 ¹⁶	
Ibu rt, imm ¹⁶ (rs)	rt = MEM[rs+imm ¹⁶		0x24	4 rs	5	rt ⁵		imm ¹⁶		
Ihu rt, imm ¹⁶ (rs)	rt = MEM[rs+imm ¹⁶		0x2	5 rs	5	rt ^o		imm ¹⁶		
sb rt, imm ¹⁶ (rs)	MEM[rs+imm ¹⁶]	= rt 0x2		3 rs	rs ⁵		_	imn	imm ¹⁰	
sh rt, imm ¹⁰ (rs)	MEM[rs+imm ¹⁰]	= rt 0x29		9 rs	rs ^o rt ^o		imm ¹⁰			
sw rt, imm ¹⁰ (rs)	MEM[rs+imm ¹⁰]	= rt	0x2	o rs	5 ²	rt°		imm ¹⁶		
Instruction	Meaning	Format								
jal label S	\$31=PC+4, jump	op	op ⁶ = 3				imm ²	mm ²⁶		
jr Rs	PC = Rs	op	⁶ = 0	rs ⁵		0	0	0	8	
jalr Rd, Rs F	d=PC+4, PC=Rs	op	⁶ = 0	rs ⁵		0	rd ⁵	0	9	
Instruction	Meaning		Format							
mult Rs, Rt	Hi, Lo = <u>Rs</u> × <u>Rt</u>	op	$0xa$ rs^5 rt^5 $0xb$ rs^5 rt^5 $0xb$ rs^5 rt^5 $0xb$ rs^5 rt^5 $0x20$ rs^5 rt^5 $0x21$ rs^5 rt^5 $0x23$ rs^5 rt^5 $0x24$ rs^5 rt^5 $0x25$ rs^5 rt^5 $0x28$ rs^5 rt^5 $0x29$ rs^5 rt^5 $0x20$ rs^5 rt^5 $0x28$ rs^5 rt^5 $0x29$ rs^5 rt^5 $0x20$ rs^5 rt^5 $0x20$ rs^5 0 $0p^6 = 0$ rs^5 0 $0p^6 = 0$ rs^5 Rt^5 0 $0p^6 = 0$ Rs^5 Rt^5 0 $0x1c$ Rs^5 Rt^5 0 $0p^6 = 0$ Rs^5 Rt^5 0 $0p^6 = 0$		0	0	0x18			
multu Rs, Rt	Hi, Lo = <u>Rs</u> × <u>Rt</u>	op ⁶ = 0		Rs⁵	≀s ⁵ Rt⁵		0	0	0x19	
mul Rd, Rs, Rt	$Rd = Rs \times Rt$	0x1c		Rs⁵	Rt	t ⁵	Rd⁵	0	0x02	
div Rs, Rt	Hi, Lo = <u>Rs</u> / <u>Rt</u>	op ⁶ = 0		Rs⁵	Rt	5	0	0	0x1a	
divu Rs, Rt	Hi, Lo = <u>Rs</u> / <u>Rt</u>	op	⁶ = 0	Rs⁵	Rt	t5	0	0	0x1b	
<u>mfhi</u> Rd	Rd = Hi	op	6 = 0	0	0)	Rd ⁵	0	0x10	
mflo Rd	Rd = Lo	op	6 = 0	0	0)	Rd ⁵	0	0x12	