
 Name:

 Student #:

King Fahd University of Petroleum and Minerals

College of Computing and Mathematics
Department of Computer Engineering

COE 301 – Computer Organization (T212)

ICS 233 – Computer Architecture & Assembly Language (T212)

Midterm Exam – SOLUTION

Date & Time: Friday March 18, 2022 (06:00 PM – 08:00 PM)

• This is a CLOSED books, CLOSED notes exam.

• Answer ALL problems.

• Show all your work. NO partial credit will be given if work is not shown.

• Use of mobile phones, smart phones/watches, tablets is prohibited.

Problem Mark Score

1 4.0

2 6.0

3 4.0

4 6.0

5 2.0

6 2.0

7 4.0

8 3.0

9 4.0

10 2.0

11 2.0

12 2.0

13 8.0

Total 49.0

Select your section number:

 COE 301 – Section 1 (UTR 08:00 – Dr. Ayaz Khan)

 COE 301 – Section 2 (UTR 11:00 – Dr. Marwan Abu-Amara)

 ICS 233 – Section 1 (UTR 11:00 – Dr. Ayaz Khan)

 ICS 233 – Section 2 (UTR 10:00 – Dr. Ayaz Khan)

Page 2 of 10

Problem 1 (4 points): Write a MIPS code fragment that computes $s1 = ($s0 45) without the

use of multiplication instructions while using a minimum number of instructions. HINT: 45 = (3 15)

sll $t0, $s0, 2
subu $t1, $t0, $s0
sll $t2, $t1, 4
subu $s1, $t2, $t1

Problem 2 (6 points): Translate the following nested if-statements into minimal MIPS assembly code.

All variables are signed integers. The values of a, b, and c are stored in $t0, $t1, and $t2,

respectively.

if ((a >= 0) && (a <= 9)) {
 if (b >= c) a = b – c;
 a = a / 4;
}

 addi $t3, zero, 9 # $t3 = 9
 blt $t0, zero, L1 # if (a < 0), skip outer if statement
 bgt $t0, $t3, L1 # if (a > 9), skip outer if statement
 bgt $t2, $t1, L2 # if (b < c), skip computing a = b – c
 subu $t0, $t1, $t2 # a = b – c
L2: sra $t0, $t0, 2 # compute a = a / 4 (use “sra” as a is signed)
L1: . . .

Page 3 of 10

Problem 3 (4 points): The following is a partial MIPS assembly language code:

Address Label Instruction
0x40B8100C L1: add $a0, $t1, $t2
 . . .
0x40B82000 L2: and $a1, $t1, $t2
 . . .
0x40B82028 bgt $a0, $a1, L2
 . . .
0x40B9C000 j L1

i. Calculate the hexadecimal 16-bit immediate value (imm16) in the bgt instruction:

imm16 = (0x40B82000 – 0x40B8202C)/4 = – 0x002C/4 = – 0x000B = 0xFFF5

ii. Calculate the hexadecimal 26-bit immediate value (imm26) in the j instruction:

PC L1: 0100 [0000 1011 1000 0001 0000 0000 11]00

 imm26 : 00 0010 1110 0000 0100 0000 0011 = 0x02E0403

Page 4 of 10

Problem 4 (6 points):

(a) (4 points) Complete the symbol table for the following data definitions showing the address of each

label, given the address of var1 is 0x10010000 in the data segment.

 .DATA
var1: .HALF -2, -3, 4, 5
str1: .ASCIIZ "EXAM"
var2: .WORD 0x5678ABCD
 .ALIGN 4
var3: .HALF 1000

Label Address

var1 0x10010000
str1 0x10010008
var2 0x10010010
var3 0x10010020

(b) (2 points) Given the data definition of part (a), show the value loaded into register $t1 (in

hexadecimal). Assume Little Endian Byte ordering is used.

Instruction Sequence Value loaded into $t1 (hexadecimal)

la $t0, var1
lb $t1, 0($t0)

$t1 = 0xFFFFFFFE (-2)

la $t0, var2
lh $t1, 0($t0)

$t1 = 0xFFFFABCD

Page 5 of 10

Problem 5 (2 points): Given that $t0 = 0x07B95342 and $t1 = 0x85305421 are two signed

integers, consider the following instruction:

sub $t2, $t0, $t1

Perform the subtraction in hexadecimal and indicate whether there is overflow. Show the subtraction in

hexadecimal below.

 111 11
 07B95342 07B95342

– 85305421 + 7ACFABDF
 8288FF21 = $t2

 Overflow occurred since adding 2 positive numbers resulted in a negative number.

Problem 6 (2 points): Let M[6][9] be an array of integers with 6 rows and 9 columns that have been

saved in the memory with &M[0][0] stored in $t0. Determine the displacement XX (in decimal) in the

following instruction to properly access the integer stored at M[2][8]:

lw $t1, XX($t0)

XX = (2 × 9 + 8) × 4 = 104

Problem 7 (4 points): Show the binary multiplication of the following two 16-bit unsigned integers.

The product should be a 32-bit unsigned integer. Do NOT show partial products (rows) that contain only

zeros.

 1 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1

× 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

Solution: 1

Carry bits 1 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1

 1 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1

 1 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1

 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 0

Page 6 of 10

Problem 8 (3 points): Complete the table below to perform the multiplication of two 4-bits signed

numbers 1011 (-5) and 1010 (-6) using the following MIPS hardware.

Iteration Steps Multiplicand Sign Product = HI, LO

0 Initialize 1011 0000 1010

1 No Add

Shift Right 0000 0101

2 Add 1011 1 1011 0101

Shift Right 1101 1010

3 No Add

Shift Right 1110 1101

4 Sub (Add 2’s Compl) 0101 0 0011 1101

Shift Right 0001 1110

Page 7 of 10

Problem 9 (4 points): Complete the table below to perform the division of two 4-bits signed numbers:

1010 (-6) / 1011 (-5) using the following MIPS hardware and calculate the final answers for the

quotient and the remainder.

Iteration Steps HI LO Divisor Difference

0 Initialize 0000 0110 0101

1 Shift Left, HI – Divisor 0000 1100 0101 < 0

Do Nothing

2 Shift Left, HI – Divisor 0001 1000 0101 < 0

Do Nothing

3 Shift Left, HI – Divisor 0011 0000 0101 < 0

Do Nothing

4 Shift Left, HI – Divisor 0110 0000 0101 0001

HI, LO update 0001 0001

Quotient = _________________________ Remainder = _________________________

Both Dividend and Divisor are negative.
Quotient = HI = 0001 (+1), Remainder = 2’s compl of LO = 1111 (-1)

Page 8 of 10

Problem 10 (2 points): Find the decimal value of the following single-precision floating-point number:

1100 0010 1011 1110 0100 0000 0000 0000

Sign = negative

Exponent value = (1000 0101)2 – 127 = (128+4+1) - 127 = 133 – 127 = 6

-(1.011 1110 0100 0000 0000 0000)2 × 26 = -(1011111.00100 0000 0000 0000)2 =

-(64+16+8+4+2+1+0.125) = -95.125

Problem 11 (2 points): Show the normalized single-precision floating-point in IEEE754 format binary

representation for: -116.325 (solve up to 4 fractional bits)

-(116.325)10 = -(1110100.0101)2 = -(1.1101000101)2 × 26

E = Exponent + 127 = 6 + 127 = 133 = (10000101)2

F = (110 1000 1010 0000 0000 0000)2

IEEE representation = 1 10000101 110 1000 1010 0000 0000 0000

Problem 12 (2 points): Convert the following IEEE 754 double-precision floating-point number into

IEEE 754 single-precision. Use rounding to zero (i.e., truncate the lesser significant bits) if needed.

0011 0101 0101 1101 1101 1001 0010 1001 1100 0101 0101 1010 1001 0011 0100 1011

Sign = 0

EDP = (011 0101 0101)2 = 853 ➔ Exponent = 853-1023 = -170

It will be an underflow for single precision floating point number as the
exponent value is out of range.

Page 9 of 10

Problem 13 (8 points): Write a MIPS function sum_digits that computes and returns the sum of

decimal digits in an unsigned integer. For example, the sum of decimal digits for 1536 is 1+5+3+6 =
15. The function sum_digits receives the unsigned integer argument in binary in register $a0. For

example, 1536 = (0000 … 0110 0000 0000)2. It should extract the decimal digits, compute, and

return their sum, also in binary, in register $v0. Hint: divide the unsigned integer by 10 to extract the

decimal digits.

Non-recursive Solution

sum_digits: li $v0, 0 # $v0 = sum = 0

 li $t0, 10 # divisor = 10

loop: divu $a0, $t0 # divide by 10

 mfhi $t1 # $t1 = remainder

 mflo $a0 # $a0 = quotient

 add $v0, $v0, $t1 # add decimal digit

 bne $a0, $zero, loop # loop if more digits in $a0

 jr $ra # return to caller

Recursive Solution

sum_digits: li $t0, 10 # divisor = 10

 bne $a0, $zero, next # do recursive call if quotient 0

 li $v0, 0 # otherwise return $v0 = 0

 jr $ra # return to caller

next: addiu $sp,$sp, -8 # allocate stack frame (2 words)

 sw $ra, 0($sp) # save return address in 1st word

 divu $a0, $t0 # divide by 10

 mflo $a0 # $a0 = quotient

 mfhi $t1 # $t1 = remainder

 sw $t1, 4($sp) # save $t1 across recursive calls

 jal sum_digits # recursive call

 lw $t1, 4($sp) # restore last $t1

 addu $v0, $v0, $t1 # add restored $t1 to current $v0

 lw $ra, 0($sp) # restore return address

 addiu $sp, $sp, 8 # release current stack frame

 jr $ra # return to caller

Name Register Usage

$zero $0 Always 0 (forced by hardware)

$at $1 Reserved for assembler use

$v0 – $v1 $2 – $3 Result values of a function

$a0 – $a3 $4 – $7 Arguments of a function

$t0 – $t7 $8 – $15 Temporary Values

$s0 – $s7 $16 – $23 Saved registers (preserved across call)

$t8 – $t9 $24 – $25 More temporaries

$k0 – $k1 $26 – $27 Reserved for OS kernel

$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)

$fp $30 Frame pointer (points to stack frame)

$ra $31 Return address (used for function call)

